59 research outputs found

    Wireless Video Transmission with Over-the-Air Packet Mixing

    Full text link
    In this paper, we propose a system for wireless video transmission with a wireless physical layer (PHY) that supports cooperative forwarding of interfered/superimposed packets. Our system model considers multiple and independent unicast transmissions between network nodes while a number of them serve as relays of the interfered/superimposed signals. For this new PHY the average transmission rate that each node can achieve is estimated first. Next, we formulate a utility optimization framework for the video transmission problem and we show that it can be simplified due to the features of the new PHY. Simulation results reveal the system operating regions for which superimposing wireless packets is a better choice than a typical cooperative PHY.Comment: 2012 Packet Video Worksho

    Multi-Source Cooperative Communication with Opportunistic Interference Cancelling Relays

    Full text link
    In this paper we present a multi-user cooperative protocol for wireless networks. Two sources transmit simultaneously their information blocks and relays employ opportunistically successive interference cancellation (SIC) in an effort to decode them. An adaptive decode/amplify-and-forward scheme is applied at the relays to the decoded blocks or their sufficient statistic if decoding fails. The main feature of the protocol is that SIC is exploited in a network since more opportunities arise for each block to be decoded as the number of used relays NRU is increased. This feature leads to benefits in terms of diversity and multiplexing gains that are proven with the help of an analytical outage model and a diversity-multiplexing tradeoff (DMT) analysis. The performance improvements are achieved without any network synchronization and coordination. In the final part of this work the closed-form outage probability model is used by a novel approach for offline pre-selection of the NRU relays, that have the best SIC performance, from a larger number of NR nodes. The analytical results are corroborated with extensive simulations, while the protocol is compared with orthogonal and multi-user protocols reported in the literature.Comment: in IEEE Transactions on Communications, 201

    False Target Detection in OFDM-based Joint RADAR-Communication Systems

    Full text link
    Joint RADAR communication (JRC) systems that use orthogonal frequency division multiplexing (OFDM) can be compromised by an adversary that re-produces the received OFDM signal creating thus false RADAR targets. This paper presents a set of algorithms that can be deployed at the JRC system and can detect the presence of false targets. The presence of a false target is detected depending on whether there is residual carrier frequency offset (CFO) beyond Doppler in the received signal, with a Generalized Likelihood Ratio Test (GLRT). To evaluate the performance of our approach we measure the detection probability versus the false alarm rate through simulation for different system configurations of an IEEE 802.11-based JRC system.Comment: Accepted in IEEE RadarConf 202

    Occupational Fraud Detection Through Visualization

    Full text link
    Occupational fraud affects many companies worldwide causing them economic loss and liability issues towards their customers and other involved entities. Detecting internal fraud in a company requires significant effort and, unfortunately cannot be entirely prevented. The internal auditors have to process a huge amount of data produced by diverse systems, which are in most cases in textual form, with little automated support. In this paper, we exploit the advantages of information visualization and present a system that aims to detect occupational fraud in systems which involve a pair of entities (e.g., an employee and a client) and periodic activity. The main visualization is based on a spiral system on which the events are drawn appropriately according to their time-stamp. Suspicious events are considered those which appear along the same radius or on close radii of the spiral. Before producing the visualization, the system ranks both involved entities according to the specifications of the internal auditor and generates a video file of the activity such that events with strong evidence of fraud appear first in the video. The system is also equipped with several different visualizations and mechanisms in order to meet the requirements of an internal fraud detection system

    Transport Layer Optimizations for Heterogeneous Wireless Multimedia Networks

    Get PDF
    The explosive growth of the Internet during the last few years, has been propelled by the TCP/IP protocol suite and the best effort packet forwarding service. However, quality of service (QoS) is far from being a reality especially for multimedia services like video streaming and video conferencing. In the case of wireless and mobile networks, the problem becomes even worse due to the physics of the medium, resulting into further deterioration of the system performance. Goal of this dissertation is the systematic development of comprehensive models that jointly characterize the performance of transport protocols and media delivery in heterogeneous wireless networks. At the core of our novel methodology, is the use of analytical models for driving the design of media transport algorithms, so that the delivery of conversational and non-interactive multimedia data is enhanced in terms of throughput, delay, and jitter. More speciffically, we develop analytical models that characterize the throughput and goodput of the transmission control protocol (TCP) and the transmission friendly rate control (TFRC) protocol, when CBR and VBR multimedia workloads are considered. Subsequently, we enhance the transport protocol models with new parameters that capture the playback buffer performance and the expected video distortion at the receiver. In this way a complete end-to-end model for media streaming is obtained. This model is used as a basis for a new algorithm for rate-distortion optimized mode selection in video streaming appli- cations. As a next step, we extend the developed models for the aforementioned protocols, so that heterogeneous wireless networks can be accommodated. Subsequently, new algorithms are proposed in order to enhance the developed media streaming algorithms when heterogeneous wireless networks are also included. Finally, the aforementioned models and algorithms are extended for the case of concurrent multipath media transport over several hybrid wired/wireless links.Ph.D.Committee Chair: Vijay Madisetti; Committee Member: Raghupathy Sivakumar; Committee Member: Sudhakar Yalamanchili; Committee Member: Umakishore Ramachandran; Committee Member: Yucel Altunbasa

    Intrusion Detection System for Platooning Connected Autonomous Vehicles

    Get PDF
    The deployment of Connected Autonomous Vehicles (CAVs) in Vehicular Ad Hoc Networks (VANETs) requires secure wireless communication in order to ensure reliable connectivity and safety. However, this wireless communication is vulnerable to a variety of cyber atacks such as spoofing or jamming attacks. In this paper, we describe an Intrusion Detection System (IDS) based on Machine Learning (ML) techniques designed to detect both spoofing and jamming attacks in a CAV environment. The IDS would reduce the risk of traffic disruption and accident caused as a result of cyber-attacks. The detection engine of the presented IDS is based on the ML algorithms Random Forest (RF), k-Nearest Neighbour (k-NN) and One-Class Support Vector Machine (OCSVM), as well as data fusion techniques in a cross-layer approach. To the best of the authors’ knowledge, the proposed IDS is the first in literature that uses a cross-layer approach to detect both spoofing and jamming attacks against the communication of connected vehicles platooning. The evaluation results of the implemented IDS present a high accuracy of over 90% using training datasets containing both known and unknown attacks
    • …
    corecore